66 research outputs found

    Computational Efficiency Requires Simple Taxation

    Full text link
    We characterize the communication complexity of truthful mechanisms. Our departure point is the well known taxation principle. The taxation principle asserts that every truthful mechanism can be interpreted as follows: every player is presented with a menu that consists of a price for each bundle (the prices depend only on the valuations of the other players). Each player is allocated a bundle that maximizes his profit according to this menu. We define the taxation complexity of a truthful mechanism to be the logarithm of the maximum number of menus that may be presented to a player. Our main finding is that in general the taxation complexity essentially equals the communication complexity. The proof consists of two main steps. First, we prove that for rich enough domains the taxation complexity is at most the communication complexity. We then show that the taxation complexity is much smaller than the communication complexity only in "pathological" cases and provide a formal description of these extreme cases. Next, we study mechanisms that access the valuations via value queries only. In this setting we establish that the menu complexity -- a notion that was already studied in several different contexts -- characterizes the number of value queries that the mechanism makes in exactly the same way that the taxation complexity characterizes the communication complexity. Our approach yields several applications, including strengthening the solution concept with low communication overhead, fast computation of prices, and hardness of approximation by computationally efficient truthful mechanisms

    Reallocation Mechanisms

    Full text link
    We consider reallocation problems in settings where the initial endowment of each agent consists of a subset of the resources. The private information of the players is their value for every possible subset of the resources. The goal is to redistribute resources among agents to maximize efficiency. Monetary transfers are allowed, but participation is voluntary. We develop incentive-compatible, individually-rational and budget balanced mechanisms for several classic settings, including bilateral trade, partnership dissolving, Arrow-Debreu markets, and combinatorial exchanges. All our mechanisms (except one) provide a constant approximation to the optimal efficiency in these settings, even in ones where the preferences of the agents are complex multi-parameter functions

    Revenue Loss in Shrinking Markets

    Full text link
    We analyze the revenue loss due to market shrinkage. Specifically, consider a simple market with one item for sale and nn bidders whose values are drawn from some joint distribution. Suppose that the market shrinks as a single bidder retires from the market. Suppose furthermore that the value of this retiring bidder is fixed and always strictly smaller than the values of the other players. We show that even this slight decrease in competition might cause a significant fall of a multiplicative factor of 1e+1β‰ˆ0.268\frac{1}{e+1}\approx0.268 in the revenue that can be obtained by a dominant strategy ex-post individually rational mechanism. In particular, our results imply a solution to an open question that was posed by Dobzinski, Fu, and Kleinberg [STOC'11]
    • …
    corecore